Skip to content Skip to navigation


A.Y. 2020 / 2021

Second semester
Type of Learning Activity 
Related/additional subjects
Study Path 
[PDS0-2018 - Ord. 2018] common
Teaching language 


Learning objectives 

Students will be able to deal with methods and models for network
analysis, and understand how they can be used on empirical network
data. This will enable them to independently address research questions
from various fields.
Knowledge and understanding: basic analytical concepts and tools to
describe and model social network structure across various levels of analysis.
Applying knowledge and understanding: being capable of dealing with
relational data, and to implement different approaches to network data
analysis in R.
Communication skills: being able to explain the basic ideas and
communicate the results to experts and to non-experts.
Learning skills: being capable to understand scientific literature on
network analysis topics and to combine appropriate methods useful for the problem at hand.


Students are required to have basic knowledge in inferential statistics
and should be familiar with linear and logistic regression models. Some
basic knowledge of software R will be also required.


- Basic analytical concepts in network analysis
- Network data collection
- Network visualization
- Descriptive analysis and network indices
- Network decomposition
- Modeling network structure
The course will include practical examples and hands-on computer
laboratories based on the analysis of real-life relational data. In the
laboratories, the emphasis will be on the analysis of social networks in
structured social and economic settings such as, for example, business
companies, and organizations.

Teaching format 

Frontal lectures and hands on computer laboratory sessions with the
software R, both individual and in groups. The balance will be roughly
65% of frontal lectures and 35% of hands-on sessions

Extended Programme 


End-of-course test 

The exam will consist in the presentation and discussion, in groups of 2
up to 4 students, on the analysis (description and model fitting) of a real
network dataset, explaining the working steps and the obtained results.
The writing of a short report is also requested, with the commented R
During the presentations, few questions will be asked to assess the
individual contributions and preparation on the topics of the course.

Changes due to COVID19 emergency will be announced on the Moodle@Units platform.

Other information 



1. Kolaczyk E.D. (2009) Statistical Analysis of Network Data. Methods and
Models, Springer, New York (selected chapters).
2. Lusher D., Koskinen J. and Robins G. (eds.) (2013) Exponential random
graph models for social networks: Theory, methods, and applications.
Cambridge University Press (selected chapters).
Recommended readings:
3. Hanneman R.A. and Riddle M. (2005) Introduction to social network
methods. Riverside, CA: University of California, Riverside (published in
digital form at
4. Amati V., Lomi A. and Mira A. (2018) Social network modeling. Annual
Review of Statistics and Its Application, 5, pp.343-369.
Additional materials, lecture notes and information will be available at the
course web page and via moodle2 e-learning platform.

Back to list of courses